This paper provides extensive studies of [IrCl(Ph-py)(morph-C6H4-terpy-κ3N)]PF6 (1A), [Ir(Ph-py)2(morph-C6H4-terpy-κ2N)]PF6 (2A), [IrCl(Ph-py)(Ph-terpy-κ3N)]PF6 (1B), and [Ir(Ph-py)2(Ph-terpy-κ2N)]PF6 (2B) designed to demonstrate the possibility of controlling the photophysical properties of mono- and bis-cyclometalated complexes [IrCl(Ph-py)(R-C6H4-terpy-κ3N)]PF6 and [Ir(Ph-py)2(R-C6H4-terpy-κ2N)]PF6 through a remote electron-donating substituent introduced into the 4'-position of 2,2':6',2″-terpyridine (terpy) via the phenyl linker. The attachment of the morpholinyl (morph) group was evidenced to induce dramatic changes in the emission characteristics of the monocyclometalated Ir(III) systems with meridionally coordinated R-C6H4-terpy ligand (κ3N). In solution, the obtained complex [IrCl(Ph-py)(morph-C6H4-terpy-κ3N)]PF6 was found to be a rare example of dual-emissive Ir(III) systems. Within the series [Ir(Ph-py)2(R-C6H4-terpy-κ2N)]PF6 bearing the R-C6H4-terpy ligand bound to the central ion in a bidentate coordination mode, the appended electron-donating morpholinyl group induced a minor effect on the emission maximum, but it was found to be an effective tool for extending the excited-state lifetime, further prolonging with the increase of solvent polarity. The results of this work are of high significance for better understanding the push-pull effect and dual-emission phenomena in Ir-based luminophores, as well as developing chromophores with prolonged emission lifetimes.