Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target

Biogerontology. 2024 Dec 26;26(1):32. doi: 10.1007/s10522-024-10173-z.

Abstract

Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling. The pathway is a key player in cellular senescence, apoptosis, and cell cycle regulation, which are all key to maintaining the health of the kidney. P53 is a transcription factor and a tumor suppressor protein that responds to cell stress and damage. Persistent activation of cell p53 can lead to the expression of p21, an inhibitor of the cell cycle known as a cyclin-dependent kinase. This causes cells to cease dividing and leads to senescence, where cells can no longer increase. The accumulation of senescent cells in the aging kidney impairs kidney function by altering the microenvironment. As the number of senescent cells increases, the capacity of the kidney to recover from injury decreases, accelerating the progression of end-stage renal disease. This article review extensively explores the relationship between the p53/p21 pathway and cellular senescence within an aging kidney and the emerging therapeutic strategies that target it to overcome the impacts of cellular senescence on CKD.

Keywords: Aging kidneys; Apoptosis; Cellular senescence; Chronic kidney disease; Renal fibrosis; Senescence-associated secretory phenotype (SASP); p53/p21 pathway.

Publication types

  • Review

MeSH terms

  • Aging* / metabolism
  • Aging* / physiology
  • Animals
  • Cellular Senescence* / physiology
  • Cyclin-Dependent Kinase Inhibitor p21* / metabolism
  • Humans
  • Kidney / metabolism
  • Kidney / pathology
  • Renal Insufficiency, Chronic* / metabolism
  • Renal Insufficiency, Chronic* / physiopathology
  • Signal Transduction*
  • Tumor Suppressor Protein p53* / metabolism

Substances

  • Tumor Suppressor Protein p53
  • Cyclin-Dependent Kinase Inhibitor p21
  • CDKN1A protein, human