Drug repurposing is necessary to accelerate drug discovery and meet the drug needs. This study investigated the possibility of using fluvoxamine to inhibit the cellular metabolizing enzyme NUDT5 in breast cancer. Computational and experimental techniques were used to evaluate the structural flexibility, binding stability, and chemical reactivity of the drugs. These findings indicated that fluvoxamine effectively suppressed the activity of NUDT5, as evidenced by a binding score of - 8.514 kcal/mol. Furthermore, the binding positions of fluvoxamine and NUDT5 were optimized. Fluvoxamine attachment to the active sites of Trp28, Trp46, Glu47, Arg51, Arg84, and Leu98 in NUDT5 has been shown to alter the metabolism of ADPr. These alterations play a role in ATP production in the breast cancer cells. In addition, an MTT assay conducted on the MCF-7 cell line using fluvoxamine revealed an IC50 value of 53.86 ± 0.05 µM. Fluvoxamine-induced apoptosis was confirmed as evidenced by AO/EtBr and DAPI staining.
Graphical abstract: Effect of fluvoxamine on breast cancer cells.
Keywords: Breast cancer; Drug repurposing; Fluvoxamine; MCF-7.; Molecular dynamic simulation; NUDT5.
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.