Detecting N-Phenyl-2-Naphthylamine, L-Arabinose, D-Mannose, L-Phenylalanine, L-Methionine, and D-Trehalose via Photocurrent Measurement

Gels. 2024 Dec 9;10(12):808. doi: 10.3390/gels10120808.

Abstract

The concentration of small molecules reflects the normality of physiological processes in the human body, making the development of simple and efficient detection equipment essential. In this work, inspired by a facile strategy in point-of-care detection, two devices were fabricated to detect small molecules via photocurrent measurement. A linear response of the photocurrent against the concentration of the small molecules was found. In the first device, metal ions were introduced into gel substrates made by xanthan gum to enhance photocurrent response. N-phenyl-2-naphthylamine was measured when iron or manganese ions were used. L-Phenylalanine was measured when the gel was modified by samarium, iron, cerium, or ytterbium ions. L-(+)-Arabinose was detected via the gels modified by iron or holmium ions. D-(+)-Mannose was detected when the gel was modified by ytterbium, manganese, chromium, or sodium ions. L-Methionine was detected in the gels modified by samarium, zinc, or chromium ions. The second device was based on a paper sheet. A sugar-like molecule was first synthesized, which was then used to modify the paper. The detection was possible since the photocurrent showed a linear trend against the concentration of D-Trehalose. A linear fit was conducted to derive the sensitivity, whose value was found to be 5542.4. This work offers a novel, simple, and environmentally sustainable platform that is potentially useful in remote areas lacking medical devices.

Keywords: photocurrent; point-of-care; sensitivity; small molecule detection.