Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment. Using a central composite orthogonal design (CCOD), the optimal conditions were identified as a 12.5 min microwave reaction time, a Ag molar ratio of 0.72, and a pH of 8.28. The FRET sensing scheme was applied for thiamine determination, where the vitamin's presence impaired the FRET process, restoring CDs' photoluminescence (PL) emission in a concentration-dependent manner. To mitigate interference from other vitamins, PL kinetic data and excitation-emission matrix (EEM) data were analyzed using unfolded partial least-squares (U-PLS) with the subsequent application of the residual bilinearization technique (RBL), achieving high sensitivity and specificity for thiamine detection. This method demonstrated its accuracy and robustness by attaining a determination coefficient (R2) of 0.952 and a relative error of prediction (REP%) of 11%. This novel method offers highly sensitive and interference-free thiamine detection, with significant potential for a wide range of analytical applications.
Keywords: Förster resonance energy transfer; carbon dots; chemometric analysis; excitation–emission matrices; silver nanoparticles; thiamine.