This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.25 Da to 1253.55 Da, notably, AGAAPE peptide (556.25 Da), negatively charged (-1), highly hydrophobic (50 %), with significant inhibitory effects on both Escherichia coli and Staphylococcus aureus (MIC 5 mg/mL). The antimicrobial mechanism of AGAAPE was determined to damage membrane through hydrogen-bond and hydrophobic interactions, resulting in leakage of intramembrane substances and inhibition of intracellular ATPase activity. Moreover, AGAAPE was pH resistant (pH 4-12), thermally stable (121 °C, 30 min), resistant to salt ion interference (Na+, Ca2+), and protease hydrolysis resistant (neutral protease, pepsin, trypsin). Overall, identifying AMPs from quinoa provides a promising new approach for fresh juice preservation.
Keywords: Antibacterial mechanism; Molecular docking; Quinoa antimicrobial peptides; Stability.
Copyright © 2024. Published by Elsevier Ltd.