Cationic surface-active agents (CSAAs) can persist in ambient water, be ingested by bees, and contaminate honey. Residues of CSAAs in honey remains unknown. This study measured the residual levels of five CSAAs in 271 honey samples from China using ultrahigh-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry. Residual benzalkonium chloride-C12 (BAC-C12), BAC-C14, BAC-C16, chlorhexidine (CHG), and 4-chloraniline levels were 0.0098-2.1468, 0.0061-1.7492, 0.0012-1.6305, 0.1576-0.8401, and 0.0019-0.0234 μg kg-1, respectively. CHG and all BAC were detected in 100 % of Z. jujuba, V. negundo var. heterophylla, wildflower, L. chinensis, and D. longan Lour honey; T. tuan honey had the lowest detection rate of any CSAAs. BAC-C16 had the highest residual level among all BAC tested in Central, North China. CHG levels were detected in 91.38 % of samples in North China and 100 % in East China. BAC-C12 was significantly higher in A. cerana versus A. mellifera honey (P < 0.001). Hazard quotient and Hazard index values indicate that CSAAs residuals in honey do not pose a health risk. Correlation analysis revealed a positive correlation between BACs resides in honey and surrounding environment. The findings suggest that continuous monitoring of CSAAs in honey is imperative to ensure its safety for human consumption, while also serving as an effective matrix to assess the environmental pollution of a given region.
Keywords: Benzalkonium chloride; Cationic surface-active agents; Chlorhexidine; Honey; Risk assessment.
Copyright © 2024 Elsevier B.V. All rights reserved.