Mitochondrial dysfunction is an important driver of neurodegeneration and synaptic abnormalities in Alzheimer's disease (AD). Amyloid beta (Aβ) in mitochondria leads to increased reactive oxygen species (ROS) production, resulting in a vicious cycle of oxidative stress in coordination with a defective electron transport chain (ETC), decreasing ATP production. AD neurons exhibit impaired mitochondrial dynamics, evidenced by fusion and fission imbalances, increased fragmentation, and deficient mitochondrial biogenesis, contributing to fewer mitochondria in brains of AD patients. Nuclear respiratory factor-1 (NRF1) is a regulator of mitochondrial biogenesis through its activation of mitochondrial transcription factor A (TFAM). Our hypothesis posited that NRF1 induction in neuronal cells exposed to amyloid β1-42 (Aβ1-42) would increase de novo mitochondrial synthesis and improve mitochondrial function, restoring neuronal survival. Following NRF1 messenger RNA (mRNA) transfection of Aβ1-42-treated SH-SY5Y cells, a marked increase in mitochondrial mass was observed. Metabolic programming toward enhanced oxidative phosphorylation resulted in increased ATP production. Oxidative stress in the form of mitochondrial ROS accumulation was reduced and mitochondrial membrane potential preserved. Mitochondrial homeostasis was maintained, evidenced by balanced fusion and fission processes. Ultimately, improvement of mitochondrial function was associated with significant decreases in Aβ1-42-induced neuronal death and neurite disruption. Our findings highlight the potential of NRF1 upregulation to counteract Aβ1-42-associated mitochondrial dysfunction and neurodegenerative cell processes, opening avenues for innovative therapeutic approaches aimed at safeguarding mitochondrial health in AD neurons.
Keywords: Alzheimer's disease; Amyloid beta; Mitochondrial biogenesis; Mitochondrial dysfunction; Nuclear respiratory factor-1 (NRF1).
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.