Green synthesis and characterization of CuO/PANI nanocomposite for efficient Pb (II) adsorption from contaminated water

Sci Rep. 2024 Dec 28;14(1):30972. doi: 10.1038/s41598-024-81970-2.

Abstract

This study presents the synthesis of a green polymer-based nanocomposite by incorporating green CuO nanoparticles into polyaniline (PANI) for the adsorption of Pb (II) ions from contaminated water. The nanocomposite was extensively characterized using FTIR, XRD, BET, SEM-EDX, XPS, and Raman spectroscopy, both before and after Pb(II) adsorption. Optimization studies were performed to assess the effects of key parameters, including pH, adsorbent dosage, and initial ion concentration on the adsorption process. Adsorption isotherms and kinetic models were applied to analyze the experimental data, revealing that the Freundlich isotherm provided the best fit, with a high correlation coefficient (R²) and a (1/n) value less than 1, indicating favorable adsorption conditions. Furthermore, the Avrami and pseudo-first-order kinetic models demonstrated superior fitting compared to other models. The green nanocomposite exhibited outstanding adsorption capacity, highlighting its potential as a sustainable and efficient adsorbent for Pb(II) removal from wastewater.

Keywords: Green Polymer; Kinetics; Nanocomposite; Pb (II) adsorption.