In this paper, an improved voltage control strategy for microgrids (MG) is proposed, using an artificial neural network (ANN)-based adaptive proportional-integral (PI) controller combined with droop control and virtual impedance techniques (VIT). The control strategy is developed to improve voltage control, power sharing and total harmonic distortion (THD) reduction in the MG systems with renewable and distributed generation (DG) sources. The VIT is used to decouple active and reactive power, reduce negative power interactions between DG's and improve the robustness of the system under varying load and generation conditions. Simulation findings under different tests have shown significant improvements in performance and computational simulation. The rise time is reduced by 60%, the overshoot is reduced by 80%, the THD of the voltage is reduced by 75% (from 0.99 to 0.20%), and the THD of the current is reduced by 69% (from 10.73 to 3.36%) compared to the conventional PI controller technique. Furthermore, voltage and current THD values were maintained below the IEEE-519 standard limits of 5% and 8%, respectively, for the power quality enhancement. Fluctuations in voltage and frequency were also maintained at 2% tolerance and 1% tolerance, respectively, across all voltage limits, which is consistent with international norms. Power-sharing errors were reduced by 50% after conducting the robustness tests against the DC supply and load disturbances. In addition, the proposed strategy outperforms the previous control techniques presented at the state of the art in terms of adaptability, stability and, especially, the ability to reduce the THD, which validates its effectiveness for MG systems control and optimization under uncertain conditions.
Keywords: AC microgrids; Adaptive PI controller; Artificial neural network; Distributed generators; Droop control; Total harmonic distortion reduction; Virtual impedance technique; Voltage regulation.
© 2024. The Author(s).