Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.1 is specifically expressed in ventral astrocytes of the spinal cord and that its deletion results in sex-specific effects on astrocyte morphology. Astrocytes from males exhibit enhanced morphological complexity, accompanied by increased motor function and cholinergic synapses. In contrast, female astrocytes exhibit reduced complexity and no changes in motor function. Mechanistically, we found that Nkx6.1 exhibits sex-specific DNA-binding properties and epigenomic remodeling, identifying Semaphorin 4A (Sema4A) and Gabbr1 as targets regulating astrocyte morphology and cholinergic synapse formation. Collectively, our studies identify astrocytic Nkx6.1 as a key regulator of astrocyte properties in the spinal cord while adding sexual dimorphism as a layer of transcriptional regulation to astrocyte function and circuit activity.
Keywords: Astrocyte; CP: Neuroscience; astrocyte morphology; developmental patterning; motor circuits; sex differences.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.