Untargeted metabolomics to relate changes produced by biocontrol agents against Aspergillus westerdijkiae and Penicillium nordicum in vitro on dry-cured ham

Int J Food Microbiol. 2024 Dec 22:430:111036. doi: 10.1016/j.ijfoodmicro.2024.111036. Online ahead of print.

Abstract

Dry-cured ham is a highly appreciated meat product. During the ripening, moulds grow on its surface such as Penicillium nordicum and Aspergillus westerdijkiae producers of ochratoxin A (OTA). This mycotoxin poses a risk to consumers that must be controlled. The aim of this work is to evaluate the effectiveness of Debaryomyces hansenii and Staphylococcus xylosus isolated from dry-cured ham as a combined biocontrol culture (BCA) to reduce the OTA produced by one strain of A. westerdijkiae and two strain of P. nordicum, and to assess the metabolomic changes they cause. Each mould was inoculated alone and in combination with BCA on dry-cured ham for 14 days at 20 °C. OTA and total metabolites were analysed in a mass spectrometer Orbitrap Q- Exactive Plus. The Compound Discoverer software, in-house Python-based software and the Metaboanalyst software were used for metabolite analysis. BCA reduced the OTA of A. westerdijkiae, P. nordicum 15 and P. nordicum 856 by 78 %, 99 % and 65 % respectively. BCA caused changes in their metabolome, mainly in the phenylalanine metabolism pathway altering compounds such as Phenylacetaldehyde, Phenylpyruvate or trans-2-hydroxycinnamate, the synthesis of phenylalanine, tyrosine, and tryptophan altering compounds such as 4-hydroxyphenylpyruvate or L-tryptophan, and in the synthesis of oxylipins derived from the linoleic acid metabolism such as 13-OxoODE, 9(S)-HODE or 9(10)-EpOME.

Keywords: D. hansenii; Metabolome; Moulds; Ochratoxin A; S. xylosus.