Microsatellites, or simple sequence repeats (SSRs), are short tandemly repeated DNA sequences widely dispersed throughout the genome. Their high variability, co-dominant inheritance, and ease of detection make them valuable genetic markers, frequently used to study genetic diversity, population structure, and evolutionary processes. In the context of malaria research, particularly with Plasmodium falciparum (P.falciparum), the deadliest malaria parasite in humans, microsatellites have been extensively utilized to track genetic variation, monitor drug resistance, and understand transmission patterns. This study highlights the significance of microsatellite markers in unraveling the genetic complexity of P. falciparum, providing insights into its biology and epidemiology. We discuss their application in the study of parasite population genetics, the challenges associated with their use, and their potential in guiding malaria control strategies. By focusing on P. falciparum, this work emphasizes the critical role of microsatellite markers in advancing our understanding of malaria transmission, drug resistance, and potential vaccine development.
Keywords: Biomarker; Elimination; Malaria infection; Microsatellite.
Copyright © 2024 Elsevier Inc. All rights reserved.