Ethnopharmacological relevance: Rheumatoid arthritis (RA) is a common autoimmune disease with a high clinical morbidity and leads to persistent chronic inflammation. Sanmiao wan is a classic formula for the treatment of RA, and the results of clinical and experimental studies have shown its therapeutic effect on RA. However, its mechanism of action remains unclear.
Aim of the study: The aim of this study was to evaluate the effect of Sanmiao wan on RA rats and to further explore its protective mechanism.
Materials and methods: Research was conducted using RA models induced by Freund's adjuvant complete, and the degree of arthritis, bone destruction, histopathological and clinical chemical indexes of RA model rats were used to evaluate the animal model and the therapeutic effect of Sanmiao wan. A combination of lipid metabolomics, serum medicinal chemistry, network pharmacology, molecular docking and experimental validation was used to systematically elucidate the potential mechanism of action of Sanmiao wan in the treatment of RA.
Result: Pharmacodynamic results showed that Sanmiao reduced joint swelling and improved immunity, and the results of non-targeted lipid metabolomics showed a total of 6 lipid core markers, which were hypothesised to play a therapeutic role in RA by modulating the glycerophospholipid metabolism and sphingolipid metabolism pathways. Using serum medicinal chemistry, we identified 19 blood components and predicted the targets related to RA, and combined with network pharmacology, we screened a total of 59 components and disease-cross-cutting targets, and the enrichment analysis and network pharmacology and KEGG results indicated that the core targets were TNF, IL6, MMP3, and the key metabolic pathways were TNF signaling pathway, lipid and The key metabolic pathways are TNF signaling pathway, lipid and atherosclerosis, rheumatoid arthritis, IL-17 signaling pathway and sphingolipid signaling pathway, etc. It was verified by molecular docking and ELISA experiments that palmatine, cyasterone, atractylenolide I, atractylenolide III, wogonoside, wogonin, phellodendrine, and berberine in Sanmiao could reduce the activity of these targets, thereby inhibiting the expression of inflammatory factors TNF-α, IL6, IL17, RF, MMP3, STAT3.
Conclusions: Sanmiao has a good therapeutic effect on RA, and for the first time, it was found that its potential mechanism of action may be to treat RA by decreasing the activities of TNF, IL6, MMP3 and modulating glycerophospholipid metabolism and sphingolipid metabolism.It provides a solid basis for the clinical application of Sanmiao wan.
Keywords: Experimental validation; Lipid metabolomics; Molecular docking; Network pharmacology; Sanmiao wan; Serum pharmacochemistryserum.
Copyright © 2024 Elsevier B.V. All rights reserved.