The present study aimed to investigate the impact of Sparassis latifolia polysaccharides (SLPs) on hepatic immune function in cyclophosphamide (CTX)-induced immunocompromised mice. Our findings demonstrated that SLPs effectively suppressed the production of alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammatory factors, and acute phase proteins, while improving the hepatic oxidative stress state. Additionally, SLPs exerted inhibitory effects on inflammatory cell infiltration within hepatic tissue. Transcriptomic results revealed that 246 differentially-expressed genes (DEGs) were identified. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis showed that the more DEGs in SLPs group were mainly related to immune signal transduction and metabolism pathways. And more DEGs were mainly related to MAPK signaling pathway and JAK/STAT signaling pathway. Metabolome analysis demonstrated that SLPs significantly modulated specific metabolites in the liver, including lipids and lipid-like molecules, organic acids and their derivatives, organic heterocyclic compounds, phenylpropanoids and polyketones, organic oxygenates, and benzene. The comprehensive analysis of transcriptome and metabonomics revealed the activation of immune-related signal pathways in mice liver stimulated by CTX. Notably, the involvement of diverse genes and metabolites was observed in the metabolism of arachidonic acid (AA) and JAK/STAT pathway. Correlation analysis also showed that there was a certain correlation between metabolites and differential genes. The present findings offer novel insights into the regulatory mechanism of liver immune injury by SLPs, which exhibits potential application value in improving immunocompromised populations.
Keywords: Immunosuppression; Liver; Metabonomics; Sparassis latifolia polysaccharides; Transcriptomics.
Copyright © 2024. Published by Elsevier B.V.