Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C-H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (rr/mr/mm = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA (rr ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA (mm ≈ 32%). Molecular weight control of PMMA was achieved (Đ = 1.1-1.2) by adding 1,1-diphenylethanol as a reversible terminator while maintaining control of the tacticity with the above ligands. Stereoblock PMMA consisting of atactic and syndiotactic segments was successfully synthesized via sequential PTAP using macroinitiator/macro-CTA methods.
© 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society.