Enhanced heart sound classification using Mel frequency cepstral coefficients and comparative analysis of single vs. ensemble classifier strategies

PLoS One. 2024 Dec 31;19(12):e0316645. doi: 10.1371/journal.pone.0316645. eCollection 2024.

Abstract

This paper seeks to enhance the performance of Mel Frequency Cepstral Coefficients (MFCCs) for detecting abnormal heart sounds. Heart sounds are first pre-processed to remove noise and then segmented into S1, systole, S2, and diastole intervals, with thirteen MFCCs estimated from each segment, yielding 52 MFCCs per beat. Finally, MFCCs are used for heart sound classification. For that purpose, a single classifier and an innovative ensemble classifier strategy are presented and compared. In the single classifier strategy, the MFCCs from nine consecutive beats are averaged to classify heart sounds by a single classifier (either a support vector machine (SVM), the k nearest neighbors (kNN), or a decision tree (DT)). Conversely, the ensemble classifier strategy employs nine classifiers (either nine SVMs, nine kNN classifiers, or nine DTs) to individually assess beats as normal or abnormal, with the overall classification based on the majority vote. Both methods were tested on a publicly available phonocardiogram database. The heart sound classification accuracy was 91.95% for the SVM, 91.9% for the kNN, and 87.33% for the DT in the single classifier strategy. Also, the accuracy was 93.59% for the SVM, 91.84% for the kNN, and 92.22% for the DT in the ensemble classifier strategy. Overall, the results demonstrated that MFCCs were more effective than other features, including time, time-frequency, and statistical features, evaluated in similar studies. In addition, the ensemble classifier strategy improved the accuracies of the DT and the SVM by 4.89% and 1.64%, implying that the averaging of MFCCs across multiple phonocardiogram beats in the single classifier strategy degraded the important cues that are required for detecting the abnormal heart sounds, and therefore should be avoided.

Publication types

  • Comparative Study

MeSH terms

  • Algorithms
  • Decision Trees
  • Heart Sounds* / physiology
  • Humans
  • Phonocardiography / methods
  • Signal Processing, Computer-Assisted
  • Support Vector Machine*

Grants and funding

The author(s) received no specific funding for this work.