The conserved influenza hemagglutinin stem, which is a target of cross-neutralizing antibodies, is now used in vaccine strategies focused on protecting against influenza pandemics. Antibody responses to group 1 stem have been extensively characterized, but little is known about group 2. Here, we characterized the stem-specific repertoire of individuals vaccinated with one of three group 2 influenza subtypes (H3, H7, or H10). Epitope mapping revealed two epitope supersites on the group 2 stem. Antibodies targeting the central epitope were broadly cross-reactive, whereas antibodies targeting the lower epitope had narrower breadth but higher potency against H3 subtypes. The ratio of B cells targeting each of the supersites varied with the vaccine subtype, leading to differences in the cross-reactivity of the B cell response. Our findings suggest that vaccine strategies targeting both group 2 stem epitopes would be complementary, eliciting broader and more potent protection against both seasonal and pandemic influenza strains.