Eutrophication of lake and reservoir caused by cyanobacterial harmful algal blooms (cyanoHABs) become a global ecological problem because of massive destruction of ecosystems, which have attracted attentions widely. In addition to the production of cyanotoxins by certain bloom-forming species, there may also be direct or indirect interactions between cyanobacteria blooms and various pollutants in lakes or reservoirs. Based on bibliometrics, 19110 papers in Web of Science (WOS) and 2998 papers in the China National Knowledge Infrastructure (CNKI) on eutrophication and cyanobacterial blooms in lakes and reservoirs were analyzed, which showed that research on this topic has been ongoing for nearly 80 years with a gradual increase in its popularity. The research on the coupling process of cyanobacterial blooms with five typical pollutants, including microcystins (MCs), heavy metals, viruses, antibiotics and antibiotic resistance genes (ARGs), indicate that the coupling process between cyanobacteria blooms and certain pollutants is indeed generated through direct or indirect interactions by adsorption, changing the physical and chemical conditions of water environment, and changing the structure of microbial community. For instance, the production, toxicity would be likely enhanced by cyanobacteria blooms directly. And the microorganisms may play a significant role in the interaction between cyanobacteria blooms and ARGs. Generally, the risk of some typical pollutants would be likely enhanced or decreased directly or indirectly by these processes. It is recommended that further attention be paid to the interrelationships between the process of cyanobacterial bloom and typical pollutants' migration and transformation, to provide the scientific basis for the risk assessment and thus multi-objective synergistic control and management of nutrients and typical pollutants in eutrophic lakes or reservoirs.
Keywords: Algal toxins; Antibiotics and antibiotic resistance genes; Cyanobacterial blooms; Heavy metals; Interaction; Virus.
Copyright © 2024 Elsevier Inc. All rights reserved.