PDIA4 targets IRE1α/sXBP1 to alleviate NLRP3 inflammasome activation and renal tubular injury in diabetic kidney disease

Biochim Biophys Acta Mol Basis Dis. 2024 Dec 30;1871(3):167645. doi: 10.1016/j.bbadis.2024.167645. Online ahead of print.

Abstract

The role of ER stress in the pathogenesis of diabetic kidney diseases (DKD) remains unclear. We employed bioinformatics to identify the UPR pathway activation, inflammation, and programmed cell death patterns in diabetic tubules. Levels of IRE1α/sXBP1 signaling, NLRP3 inflammasome activity and pyroptosis in tubular cells under high glucose conditions were measured. IRE1α knockdown was used to determine its role in glucose-triggered activation of the NLRP3 inflammasome and pyroptosis. PDIA4 overexpression and silencing were used to assess its impact on the IRE1α/sXBP1 pathway. The dynamic interaction among PDIA4, GRP78, and IRE1α under high glucose were analyzed using immunoprecipitation and crosslinking assays. In STZ-induced and db/db mouse models of DKD, the regulatory role of PDIA4 on IRE1α/sXBP1 signaling and diabetic tubular inflammation and injury were evaluated. Our study showed that IRE1α/sXBP1, NLRP3 inflammasome, and pyroptosis are activated in the renal tubules of DKD patients. Induction of IRE1α pathway mediated the glucose-triggered activation of the NLRP3 inflammasome and pyroptosis. Moreover, overexpression of PDIA4 decreased the activation of IRE1α/sXBP1 under high glucose conditions. High glucose leads to the release of GRP78 from IRE1α and an increased interaction between IRE1α and PDIA4. In mouse models of DKD, overexpressing PDIA4 mitigated diabetic tubular injury and inflammation, marked by decreased IRE1α/sXBP1 and NLRP3 inflammasome. In conclusion, our findings demonstrate that high glucose triggers NLRP3 inflammasome and pyroptosis via the IRE1α/sXBP1 pathway in renal tubular cells. Overexpression of PDIA4 suppresses IRE1α signaling by binding to its oligomeric form, implying a promising therapeutic intervention for DKD.

Keywords: Diabetic Kidney Disease; IRE1α; NLRP3 inflammasome; PDIA4; sXBP1.