Neurodegenerative diseases, including Alzheimer disease, frontotemporal dementia, Parkinson disease, Huntington disease, and amyotrophic lateral sclerosis, are often casually linked to protein aggregation and inclusion. As the origins of those proteinopathies have been biochemically traced and genetically mapped, genetically engineered animal models carrying the specific mutations or variants are widely used for investigating the etiology of these diseases, as well as for testing potential therapeutics. This article focuses on the mouse models of Alzheimer disease and closely related frontotemporal dementia, particularly the ones that have provided most valuable knowledge, or are in a trajectory of doing so. More importantly, some of the major findings from these models are summarized, based on the recent single-cell transcriptomics, multiomics, and spatial transcriptomics studies. While no model is perfect, it is hoped that the new insights from these models and the practical use of these models will continue to help to establish a path forward.
Copyright © 2024. Published by Elsevier Inc.