A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis of intricate biological data and the extraction of substantial associations from datasets for a variety of biomedical uses. AI has attracted significant interest in biomedical research due to its features: (i) better patient care through early diagnosis and detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) lowering medical costs; (vi) reducing morbidity and mortality; (vii) enhancing performance; (viii) enhancing precision; and (ix) time efficiency. Quantitative metrics are crucial for evaluating AI implementations, providing insights, enabling informed decisions, and measuring the impact of AI-driven initiatives, thereby enhancing transparency, accountability, and overall impact. The implementation of AI in biomedical fields faces challenges such as ethical and privacy concerns, lack of awareness, technology unreliability, and professional liability. A brief discussion is given of the AI techniques, which include Virtual screening (VS), DL, ML, Hidden Markov models (HMMs), Neural networks (NNs), Generative models (GMs), Molecular dynamics (MD), and Structure-activity relationship (SAR) models. The study explores the application of AI in biomedical fields, highlighting its enhanced predictive accuracy, treatment efficacy, diagnostic efficiency, faster decision-making, personalized treatment strategies, and precise medical interventions.
Keywords: Artificial Intelligence; biomedical application; deep learning; machine learning.