Sulfenylnitrene-mediated nitrogen-atom insertion for late-stage skeletal editing of N-heterocycles

Science. 2025 Jan 3;387(6729):102-107. doi: 10.1126/science.adp0974. Epub 2025 Jan 2.

Abstract

Given the prevalence of nitrogen-containing heterocycles in commercial drugs, selectively incorporating a single nitrogen atom is a promising scaffold hopping approach to enhance chemical diversity in drug discovery libraries. We harness the distinct reactivity of sulfenylnitrenes, which insert a single nitrogen atom to transform readily available pyrroles, indoles, and imidazoles into synthetically challenging pyrimidines, quinazolines, and triazines, respectively. Our additive-free method for skeletal editing employs easily accessible, benchtop-stable sulfenylnitrene precursors over a broad temperature range (-30 to 150°C). This approach is compatible with diverse functional groups, including oxidation-sensitive functionalities such as phenols and thioethers, and has been applied to various natural products, amino acids, and pharmaceuticals. Furthermore, we have conducted mechanistic studies and explored regioselectivity outcomes through density functional theory calculations.