Exploring the antiproliferative and proapoptotic activities of new pyridopyrimidine derivatives and their analogs

Bioorg Med Chem. 2025 Feb 1:118:118053. doi: 10.1016/j.bmc.2024.118053. Epub 2024 Dec 28.

Abstract

This study investigates a series of newly synthesized compounds, including pyridopyrimidine derivatives (9a-g), tricyclic pyridotriazolopyrimidine analogs (18a-d), and dihydropyrimidinones (22a-i), as apoptotic inducers and inhibitors of phosphatidylinositol-3-kinase α (PI3Kα), with potential anticancer activity. An initial in vitro screening of 60 cancer cell lines identified pyridopyrimidine derivatives 9a-g as promising broad-spectrum anticancer agents, with compound 9e demonstrating the strongest inhibitory activity, particularly against T-47D breast cancer cells. Notably, the antitumor potency of compound 9e surpassed that of Pictilisib, inducing G2-M phase cell cycle arrest and initiating apoptosis through the intrinsic apoptotic pathway. Molecular docking studies further indicated that compound 9e binds to PI3Kα in a similar fashion to the co-crystallized ligand. Moreover, compound 9e exhibited favorable drug-like properties, including compliance with Lipinski's rule and Veber's rule, good solubility, acceptable TPSA, and high gastrointestinal absorption reinforcing its potential as a highly effective anticancer agent.

Keywords: ADME; Anticancer activity; Apoptotic activity; Molecular docking; PI3K; Pyridopyrimidine; T-47D.

MeSH terms

  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Apoptosis* / drug effects
  • Cell Line, Tumor
  • Cell Proliferation* / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor*
  • Humans
  • Molecular Docking Simulation*
  • Molecular Structure
  • Phosphoinositide-3 Kinase Inhibitors / chemical synthesis
  • Phosphoinositide-3 Kinase Inhibitors / chemistry
  • Phosphoinositide-3 Kinase Inhibitors / pharmacology
  • Pyrimidines* / chemical synthesis
  • Pyrimidines* / chemistry
  • Pyrimidines* / pharmacology
  • Structure-Activity Relationship

Substances

  • Pyrimidines
  • Antineoplastic Agents
  • Phosphoinositide-3 Kinase Inhibitors