Efficacy of Salicylic acid (SA) in Modulating the Dynamics of Pesticide-Thiamethoxam-induced Stress responses in Brassica juncea L. Insights from Biochemical and Molecular Dissection

Environ Pollut. 2024 Dec 31:125616. doi: 10.1016/j.envpol.2024.125616. Online ahead of print.

Abstract

The present study uncovers the impacts of pesticide-thiamethoxam (TMX- 750 mg L-1) and salicylic acid (SA- 0.01, 0.1 and 1 mM) in Brassica juncea L. TMX poisoning exacerbates the nuclear and membrane damage, whereas an increment in the oxidative stress markers like hydrogen peroxide (H2O2), superoxide anions (O2-) and malondialdehyde (MDA) contents has been observed. The significance of phytohormone SA in mitigating TMX toxicity by enhancing the growth, and antioxidant capacities of B. juncea seedlings is not well documented. Salicylic acid priming to these TMX-exposed seedlings maximizes the germination potential by 34%, and root, shoot length by 86.9% and 41.5%, whereas, minimizing the levels of oxidative stress indicators such as H2O2 by 34.8%, O2- by 26.9% and amounts of MDA by 45.6% and EL (electrolyte leakage) contents by 22.7% under 1 mM of SA. Also, an increment in the activity of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), peroxidase (POD), and catalase (CAT) by 122.1%, 186%, 39%, 82.61%, 40.02%, 75.6% and 59.5% was observed when TMX exposed seeds were supplemented with the highest SA (1 mM) concentration. Whereas, an upregulation in the gene expressions of enzymatic antioxidants was assessed as well as a swift decrease in the RBOH1 (respiratory burst oxidase1) gene expression was observed under the subsequent SA supplementation. Thus, the results effectively address the ameliorative potentials of exogenously applied SA in order to maximize the growth and development, by mediating osmotic adjustments, and antioxidant potentials in B. juncea L.

Keywords: Abiotic stress; Enzymatic antioxidants; Gene expression; Growth attributes; Histochemical imaging; Oxidative stress markers; Phytohormones.