Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites (M = H2, ZnII, CoII, CoI) affect the pKa of benzoic acid guests bound in discrete porphyrin nanoprisms (M3TriCage) in CD3CN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H+ transfer processes that are needed to support important electrochemical reactions (e.g., reductions of H+, O2, or CO2). Usefully, the cavities of the host-guest complexes become hydrated at low water concentrations (10-40 mM), providing a good representation of the active sites of porous electrocatalysts in water. Under these conditions, Lewis acidic CoII and ZnII ions increase the Bro̷nsted acidities of the guests by 4 and 8 pKa units, respectively, while reduction of the CoII sites to anionic CoI sites produces an electrostatic potential that lowers acidity by ca. 4 units (8 units relative to the CoII state). Lacking functional metal sites, H6TriCage increases the acidity of the guests by just 2.5 pKa units despite the 12+ charge of this host and contributions from other factors (hydrogen bonding, hydration) that might stabilize the deprotonated guests. Thus, the metal sites have dominant effects on acid-base chemistry in the M3TriCages, providing a larger pKa range (12.75 to ≥24.5) for an encapsulated acid than attained via other confinement effects in proteins and artificial porous materials.