Global analysis by LC-MS/MS of N6-methyladenosine and inosine in mRNA reveal complex incidence

RNA. 2025 Jan 2:rna.080324.124. doi: 10.1261/rna.080324.124. Online ahead of print.

Abstract

The precise and unambiguous detection and quantification of internal RNA modifications represents a critical step for understanding their physiological functions. The methods of direct RNA sequencing are quickly developing allowing for the precise location of internal RNA marks. This detection is however not quantitative and still presents detection limits. One of the biggest remaining challenges in the field is still the detection and quantification of m6A, m6Am, inosine and m1A modifications of adenosine. The second intriguing and timely question remaining to be addressed is the extent to which individual marks are coregulated or potentially can affect each other. Here we present a methodological approach to detect and quantify several key mRNA modifications in human total RNA and in mRNA, which is difficult to purify way from contaminating tRNA. We show that the adenosine demethylase FTO primarily targets m6Am marks in noncoding RNAs in HEK293T cells. Surprisingly, we observe little effect of FTO or ALKBH5 depletion on the m6A mRNA levels. Interestingly, upregulation of ALKBH5 is accompanied by an increase in inosine level in overall mRNA.

Keywords: ALKBH5; FTO ADAR; RNA editing; adenosine methylation; inosine.