While self-assembled material based inverted perovskite solar cells have surpassed power conversion efficiencies of 26%, enhancing their performance in large-area configurations remains a significant challenge. In this work, we report a self-assembled material based hole-selective layer 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid, with a π-expanded conjugation. The enhanced intermolecular π-π interactions facilitate the self-assembly of 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid molecules to form an ordered bilayer with a hydrophilic surface, which passivates the buried perovskite interface defect and enables high-quality and large-area perovskite preparation, while simultaneously enhancing interfacial charge extraction and transport. The certified efficiency of 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid based small-area (0.0715 cm2) device is 26.39% with high stability. Furthermore, a certified efficiency of 25.21% is achieved for a 99.12 mm2 large area device.
© 2024. The Author(s).