Restoring small water bodies to improve lake and river water quality in China

Nat Commun. 2025 Jan 2;16(1):294. doi: 10.1038/s41467-024-55714-9.

Abstract

Climate change, population growth, and agricultural intensification are increasing nitrogen (N) inputs, while driving the loss of inland water bodies that filter excess N. However, the interplay between N inputs and water body dynamics, and its implications for water quality remain poorly understood. Analyzing data from 1995 to 2015 across China, here, we find a 71% reduction in the area of small (<104.5 m2) water bodies (SWB), primarily in high-N-input agricultural regions. Preferential loss of SWBs, the most efficient nutrient filters, places 42% of China at high water quality risk due to increasing N inputs and declining SWB density. Currently, N removal by water bodies is 986 kilotonnes year-1, but restoring 2.3 million hectares of SWB could increase removal by 21%, compared to just 5% for equivalent restoration of large water bodies. Targeted SWB restoration is crucial for improving water quality and mitigating N pollution in China.