Idiopathic pulmonary fibrosis (IPF) is a progressive, late-onset disease marked by lung scarring and irreversible loss of lung function. Genetic factors significantly contribute to both familial and sporadic cases, yet there are scarce evidence-based studies highlighting the benefits of integrating genetics into the management of IPF patients. In this study, we performed whole-exome sequencing and telomere length (TL) measurements on IPF patients and their relatives. We then identified rare deleterious variants using three virtual gene panels encompassing IPF or TL genes with varying levels of evidence supporting their potential relationship with the disease. We identified 10 candidate variants in well-established disease genes, and these results were validated using two automatic prioritization tools (Exomiser and Franklin). Pathogenic variants were found in two telomere-related genes (RTEL1 and NAF1), and both were associated with severe TL shortening. Our results suggest that this tiered virtual panel strategy is sufficiently robust and serves as a viable solution in clinical practice. It generates valuable genetic data which can be interpreted and validated with the expertise of a multidisciplinary team.
© 2024. The Author(s).