Background: Disease-causing copy-number variants (CNVs) often encompass contiguous genes and can be detected using chromosomal microarray analysis (CMA). Conversely, CNVs affecting single disease-causing genes have historically been challenging to detect due to their small sizes.
Methods: A custom comprehensive CMA (Baylor College of Medicine - BCM v11.2) containing 400k probes and featuring exonic coverage for >4200 known or candidate disease-causing genes was utilized for the detection of CNVs at single-exon resolution. CMA results across a consecutive clinical cohort of more than 13 000 patients referred for genetic investigation at Baylor Genetics were examined. The genomic characteristics of CNVs impacting single protein-coding genes were investigated.
Results: Pathogenic or likely pathogenic (P/LP) CNVs (n = 190) affecting single protein-coding genes were detected in 188 patients, accounting for 9.9% (188/1894) of patients with P/LP CMA findings. The P/LP monogenic CNVs accounted for 9.2% (190/2058) of all P/LP nuclear CNVs detected by CMA. A total of 57.9% (110/190) of P/LP monogenic CNVs were smaller than 50 kb in size. Single exons were affected by 26.3% (50/190) of P/LP monogenic CNVs while 13.2% (25/190) affected 2 exons. CNVs were detected across 107 unique genes associated with predominantly autosomal dominant (AD) and X-linked (XL) conditions but also contributed to autosomal recessive (AR) conditions.
Conclusions: CMA with exon-targeted coverage of disease-associated genes facilitated the detection of small CNVs affecting single protein-coding genes, adding substantial clinical sensitivity to comprehensive CNV investigation. This approach resolved monogenic CNVs associated with autosomal and X-linked monogenic etiologies and yielded multiple significant findings. Monogenic CNVs represent an underrecognized subset of disease-causing alleles for Mendelian disorders.
© Association for Diagnostics & Laboratory Medicine 2025. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].