Artificial intelligence (AI) is significantly advancing precision medicine, particularly in the fields of immunogenomics, radiomics, and pathomics. In immunogenomics, AI can process vast amounts of genomic and multi-omic data to identify biomarkers associated with immunotherapy responses and disease prognosis, thus providing strong support for personalized treatments. In radiomics, AI can analyze high-dimensional features from computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) images to discover imaging biomarkers associated with tumor heterogeneity, treatment response, and disease progression, thereby enabling non-invasive, real-time assessments for personalized therapy. Pathomics leverages AI for deep analysis of digital pathology images, and can uncover subtle changes in tissue microenvironments, cellular characteristics, and morphological features, and offer unique insights into immunotherapy response prediction and biomarker discovery. These AI-driven technologies not only enhance the speed, accuracy, and robustness of biomarker discovery but also significantly improve the precision, personalization, and effectiveness of clinical treatments, and are driving a shift from empirical to precision medicine. Despite challenges such as data quality, model interpretability, integration of multi-modal data, and privacy protection, the ongoing advancements in AI, coupled with interdisciplinary collaboration, are poised to further enhance AI's roles in biomarker discovery and immunotherapy response prediction. These improvements are expected to lead to more accurate, personalized treatment strategies and ultimately better patient outcomes, marking a significant step forward in the evolution of precision medicine.
Keywords: Artificial intelligence; genomics; pathomics; radiomics; transcriptomics; tumor immune microenvironment.
Copyright © 2025 The Authors.