Effective heat management is critical for improving energy efficiency and minimizing environmental impact. Passive radiative heat management systems rely on specific materials and design configurations to naturally modulate temperature, enhance system reliability, and decrease operational costs by modulating infrared light. However, their static nature proves insufficient in dynamic settings experiencing significant temperature fluctuations. Adaptive radiative thermal management systems offer real-time heat exchange control, optimizing performance in varying conditions. However, such systems often interfere with the visible light response of the material, restricting application. Here, we present an adaptive thermal heat management system based on Ag nanowire (AgNW) networks on polydimethylsiloxane (PDMS). The AgNW network functions like a Faraday cage, with critical dimensions that do not interfere with visible light while effectively interacting with infrared light. Mechanical actuation enables over 40% modulation of thermal infrared light, leading to a perceived temperature difference of 6 °C when observed with a thermal camera relative to a 100 °C heat source.
Keywords: Adaptive systems; Biomimetics; Infrared light; Thermal management; cephalopods.