Abnormalities in cerebellar subregions' volume and cerebellocerebral structural covariance in autism spectrum disorder

Autism Res. 2025 Jan 3. doi: 10.1002/aur.3287. Online ahead of print.

Abstract

The cerebellum plays a crucial role in functions, including sensory-motor coordination, cognition, and emotional processing. Compared to the neocortex, the human cerebellum exhibits a protracted developmental trajectory. This delayed developmental timeline may lead to increased sensitivity of the cerebellum to external influences, potentially extending the vulnerability period for neurological disorders. Abnormal cerebellar development in individuals with autism has been confirmed, and these atypical cerebellar changes may affect the development of the neocortex. However, due to the heterogeneity of autism spectrum disorder (ASD), the regional changes in the cerebellum and cerebellocerebral structural relationship remain unknown. To address these issues, we utilized imaging methods optimized for the cerebellum and cerebrum on 817 individuals aged 5-18 years in the ABIDE II dataset. After FDR correction, significant differences between groups were found in the right crus II/VIIB and vermis VI-VII. Structural covariance analysis revealed enhanced structural covariance in individuals with autism between the cerebellum and parahippocampal gyrus, pars opercularis, and transverse temporal gyrus in the right hemisphere after FDR correction. Furthermore, the structural covariance between the cerebellum and some regions of the cerebrum varied across sexes. A significant increase in structural covariance between the cerebellum and specific subcortical structures was also observed in individuals with ASD. Our study found atypical patterns in the structural covariance between the cerebellum and cerebrum in individuals with autism, which suggested that the underlying pathological processes of ASD might concurrently affect these brain regions. This study provided insight into the potential of cerebellocerebral pathways as therapeutic targets for ASD.

Keywords: atypical patterns; autism; cerebellar subregions' volume; cerebellocerebral structural covariance; pars opercularis.