BayesAge 2.0: a maximum likelihood algorithm to predict transcriptomic age

Geroscience. 2025 Jan 3. doi: 10.1007/s11357-024-01499-0. Online ahead of print.

Abstract

Aging is a complex biological process influenced by various factors, including genetic and environmental influences. In this study, we present BayesAge 2.0, an upgraded version of our maximum likelihood algorithm designed for predicting transcriptomic age (tAge) from RNA-seq data. Building on the original BayesAge framework, which was developed for epigenetic age prediction, BayesAge 2.0 integrates a Poisson distribution to model count-based gene expression data and employs LOWESS smoothing to capture nonlinear gene-age relationships. BayesAge 2.0 provides significant improvements over traditional linear models, such as Elastic Net regression. Specifically, it addresses issues of age bias in predictions, with minimal age-associated bias observed in residuals. Its computational efficiency further distinguishes it from traditional models, as reference construction and cross-validation are completed more quickly compared to Elastic Net regression, which requires extensive hyperparameter tuning. Overall, BayesAge 2.0 represents a step forward in tAge prediction, offering a robust, accurate, and efficient tool for aging research and biomarker development.

Keywords: Aging clocks; BayesAge; Elastic Net regression; Epigenetic age; Transcriptomic age; tAge.