Recently, it was proposed that the chiral central charge of a gapped, two-dimensional quantum many-body system is proportional to a bulk ground state entanglement measure known as the modular commutator. While there is significant evidence to support this relation, we show in this Letter that it is not universal. We give examples of lattice systems that have vanishing chiral central charge, which nevertheless give nonzero "spurious" values for the modular commutator for arbitrarily large system sizes, in both one and two dimensions. Our examples are based on cluster states and utilize the fact that they can generate nonlocal modular Hamiltonians.