Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method. The hydrogel was composed of kaolin, N-hydroxysuccinimide-grafted oxidized microcrystalline cellulose (OMCC-NHS), and polyacrylic acid (PAA). Featuring a multi-crosslinked network, it exhibited favorable elasticity (∼942 %), tensile strength (∼220 kPa), fatigue resistance, and robust tissue adhesion (∼55 kPa)-3.9 times stronger than commercial wound-closure strips, and it maintained adhesion even underwater. In addition to its mechanical properties, the hydrogel also exhibited satisfactory antibacterial activity, cytocompatibility, and histocompatibility. In vivo evaluations revealed an impressive hemostatic performance in rat models of liver bleeding, femoral artery bleeding, and tail amputation. Specifically, in the liver bleeding model, the hydrogel reduced blood loss to only 0.1 g, which is just 32 % of the blood loss seen with medical gauze. Notably, in New Zealand rabbit models with cardiac punctures and liver injuries, the hydrogel achieved rapid hemostasis and stopped the bleeding within seconds. The effective hemostatic ability of this hydrogel is primarily due to its ability to facilitate multistep hemostasis, which includes sealing the wound, rapidly absorbing blood, promoting RBC and platelets adhesion, and activating the intrinsic coagulation cascade. Therefore, this study provides a promising approach for developing gel-based hemostatic bandages, specifically tailored for emergency compressible bleeding scenarios.
Keywords: Bioadhesion; Hydrogel bandage; Rapid hemostasis; Tough.
Copyright © 2024. Published by Elsevier Inc.