Donafenib is an improved version of sorafenib in which deuterium is substituted into the drug's chemical structure, enhancing its stability and antitumor activity. Donafenib exhibits enhanced antitumor activity and better tolerance than sorafenib in preclinical and clinical studies. However, the specific mechanism of its effect on hepatocellular carcinoma has not been reported. Iron deposition is a cell death pattern caused by disturbances in iron metabolism. Apoptosis is a form of programmed cell death. They may interact with each other during cell death. This study mainly explores the potential mechanism of donafenib activating the p53 signaling pathway, inducing iron deposition, and enhancing cell apoptosis in hepatocellular carcinoma. Hepa1-6 and Huh7 cells were treated with various concentrations of donafenib. Scratch healing and pore migration tests were conducted. Analyze apoptosis through flow cytometry and TUNEL fluorescence labeling. RNA sequencing was conducted on both untreated and donafenib-treated Huh7 cells. The key proteins involved in ferroptosis (SLC7A11, GPX4) and apoptosis (caspase3, caspase8, Bax, Bcl-2, p53) were then evaluated using immunoblotting and immunohistochemical staining. Reactive oxygen species (ROS) levels in the cancer cells were measured. Donafenib treatment resulted in a dose-dependent decrease in the proliferation, migration, and invasion capabilities of cancer cells. There was an increase in apoptosis rates and ROS accumulation, and a reduction in tumor volume. The key proteins involved in ferroptosis and apoptosis underwent significant changes. Donafenib activates the p53 signaling pathway, induce ferroptosis, and enhance apoptosis, suggesting its potential as an effective therapeutic agent for HCC.
Keywords: Cell apoptosis; Donafenib; Ferroptosis; Hepatocellular carcinoma; p53.
© 2025. The Author(s).