Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown. This study investigates the impact of this sequential disinfection process on the fate of iARGs, eARGs, and a crucial mobile genetic element (intI1) within a full-scale WWTP. Our findings revealed that the UF-UV-chlorination process effectively reduced the overall absolute abundance of detected ARGs in the effluent by 1.93 log, and intI1 by 0.86 log, compared to secondary effluent. The majority of these removals was achieved due to the UF and UV disinfection, while chlorination showed negligible impact on the absolute abundance of ARGs in the final effluent. Notably, five genera were identified as potential hosts for intI1 and eight iARGs, including aac(6')-Ib-cr, drfA1, sul1, sul2, ermB, mefA, tetA, and tetX, suggesting a high potential for horizontal gene transfer involving these ARGs. Overall, this study demonstrated that UF-UV-chlorination is a highly effective method for reducing ARGs in effluent from WWTPs.
Keywords: Antibiotic resistance genes; Chlorination; Disinfection; Ultrafiltration; Ultraviolet.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.