Background: Ischemic stroke affects 15 million people worldwide, causing five million deaths annually. Despite declining mortality rates, stroke incidence and readmission risks remain high, highlighting the need for preventing readmission to improve the quality of life of survivors. This study developed a machine-learning model to predict 90-day stroke readmission using electronic medical records converted to the common data model (CDM) from the Regional Accountable Care Hospital in Gangwon state in South Korea.
Methods: We retrospectively analyzed data from 1,136 patients with ischemic stroke admitted between August 2003 and August 2021 after excluding cases with missing blood test values. Demographics, blood test results, treatments, and comorbidities were used as key features. Six machine learning models and three deep learning models were used to predict 90-day readmission using the synthetic minority over-sampling technique to address class imbalance. Models were evaluated using threefold cross-validation, and SHapley Additive exPlanations (SHAP) values were calculated to interpret feature importance.
Results: Among 1,136 patients, 196 (17.2 %) were readmitted within 90 days. Male patients were significantly more likely to experience readmission (p = 0.02). LightGBM achieved an area under the curve of 0.94, demonstrating that analyzing stroke and stroke-related conditions provides greater predictive accuracy than predicting stroke alone or all-cause readmissions. SHAP analysis highlighted renal and metabolic variables, including creatinine, blood urea nitrogen, calcium, sodium, and potassium, as key predictors of readmission.
Conclusion: Machine-learning models using electronic health record-based CDM data demonstrated strong predictive performance for 90-day stroke readmission. These results support personalized post-discharge management and lay the groundwork for future multicenter studies.
Keywords: Common data model; Machine learning; Readmission; SHAP; Stroke.
Copyright © 2024. Published by Elsevier B.V.