Constructing coral reef-like imprinted structure on molecularly imprinted nanocomposite membranes based on nanospheres with hydrophilic multicores for selective separation of acteoside

J Chromatogr A. 2024 Dec 31:1742:465645. doi: 10.1016/j.chroma.2024.465645. Online ahead of print.

Abstract

Molecularly imprinted nanocomposite membranes (MINMs) have shown great superiority in selective separation of acteoside (ACT) from phenylethanoid glycosides in Cistanche tubulosa. Herein, ACT-based MINMs (A-MINMs) with coral reef-like imprinted structure were proposed and developed for specifically separating ACT molecules. The nanospheres with hydrophilic multicores (NHMs) were introduced into polyvinylidene fluoride (PVDF) powders to obtain NHMs@PVDF membranes by a phase inversion method. Subsequently, the designed coral reef-like imprinted structure was constructed on NHMs@PVDF membrane-based surface. The A-MINMs with coral reef-like imprinted structure had dendritic and porous properties, which helped to form abundant ACT-imprinted cavities and sites of A-MINMs. In addition, the hydrophilic multicores and void space of NHMs together formed the affinity capture cages for hydrophilic ACT, enhancing rebinding capacity and permselectivity of A-MINMs. Therefore, A-MINMs with coral reef-like imprinted structure exhibited the high rebinding capacity (110.95 mg/g), rebinding selectivity of 5.15 and outstanding permselectivity of 10.04 toward ACT molecules. Moreover, the designed strategy of A-MHIMs with coral reef-like imprinted structure provides a new feasible method for permselectivity separation of other bioactive components.

Keywords: Coral reef-like imprinted structure; Molecularly imprinted nanocomposite membrane; Natural product; Separation.