Pakistan's geographic location makes it an important land hub between Central Asia, Middle East-North Africa, and China. However, the railways, roads, farmland, riverways, and residential quarters in the Piedmont plains of Baluchistan province in northwestern Pakistan are under serious threat of flooding in the summer of 2022. The urgency and severity of climate change's impact on humanity are underscored by the significant threats posed to human life and property in Piedmont Plains environments through extreme flood events, which has garnered widespread concerns. In flood scenarios, accurately predicting the extent of flooding is crucial for disaster assessment, emergency response, and the efficient allocation of resources. Previous research has primarily predicted flooding likelihood based on topographical factors or integrated annual rainfall data, failing to account for the extent of flooding from short-term rainfall before and after an event. Flood disasters are not caused by a single factor but are influenced by a variety of elements, including terrain and climate. Therefore, current research still lacks a comprehensive consideration of these influencing factors to accurately predict both the range and severity of flood impacts. In this paper, in response to the inability to accurately predict the flood damage in the pre-hill plains region in previous studies, combined with the current Pakistan mega-flood disaster, will couple the impacts of various flood-inducing factors on flooding, construct a prediction model for the degree of inundation of the Pakistani pre-hill plains flood disaster, and combined with the distribution of regional bearers, analyze the risk-resistant capacity of different types of bearers, and draw a comprehensive risk map piece under the flooding disaster. This paper bridges the gap of not integrating various factors in previous studies. Our research results provide strong evidence for flood prediction in Pakistan and similar regions, which is of great significance in reducing the loss of life and property of people around the world.
Keywords: Flood; Pakistan; Piedmont plain; Risk assessment; Submerged area.
© 2025. The Author(s).