The regulation of the charged microenvironment around implants is an effective way to promote osseointegration. Although homeostasis of the charged microenvironment plays an integral role in tissues, current research is externally invasive and unsuitable for clinical applications. In this study, functional materials with different surface potential differences are prepared by changing the spatial layout of Ta and Ag on the surface of a Ti-6Al-4V alloy (TC4). This naturally formed an endogenous electric field (EEF) with a negatively charged cell membrane after in vivo implantation and promoted osseointegration at the interface between the bone and implant through the upregulation of Ca2+ concentration and activation of subsequent pathways. Interestingly, the promotion of stem cell differentiation, regulation of the direction of immune cell polarization, and antibacterial efficacy are determined by the free charge contained in the implant, rather than by the magnitude of the surface potential difference. This functional implant represents a unique strategy for regulating the charged microenvironment around the implant and enhancing osseointegration, thereby providing ideas and technical approaches for the clinical development of novel implant materials.
Keywords: charge microenvironment; endogenous electric field; osseointegration; stem cell differentiation.
© 2025 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.