Higher physical activity levels are related to faecal microbiota diversity and composition in young adults

Biol Sport. 2025 Jan;42(1):123-135. doi: 10.5114/biolsport.2025.139850. Epub 2024 Jun 4.

Abstract

Increasing physical activity (PA) is recognised as an efficacious approach for preventing and treating cardiometabolic diseases. Recently, the composition of microorganisms living within the gut has been proposed as an important appropriate target for treating these diseases. Whether PA is related to faecal microbiota diversity and composition in humans remains to be ascertained. Thus, we examined the association of the time spent in objectively measured PA with faecal microbiota diversity and composition in young adults. A cross-sectional study enrolled 88 young adults aged 22.0 ± 2.3 years (72.7% women), whose time spent in PA at different intensities was objectively measured with a wrist-worn accelerometer for 7 consecutive days. Faecal microbiota diversity and composition were analysed with hypervariable tag sequencing of the V3-V4 region of the 16S rRNA gene. The mean Euclidean Norm of the raw accelerations Minus One (mg) during waking time, considered as overall PA, and the time spent in vigorous PA were positively correlated with alpha diversity indexes (all rho ≥ 0.23, P ≤ 0.034). Regarding faecal microbiota composition, participants with low time spent in vigorous PA had higher relative abundance of the Gammaproteobacteria class (q = 0.021, FDR = q-value) compared to the participants with high time spent in vigorous PA, and lower relative abundance of the Porphyromonadaceae family (q = 0.031) and the Alistipes genus (q = 0.015) compared to the individuals with high and intermediate time spent in vigorous PA, respectively. Our results suggest that PA, especially of vigorous intensity, is related to faecal microbiota diversity and the Gammaproteobacteria class and Porphyromonadaceae family in young adults.

Keywords: Activity monitor; Gastrointestinal microbiome; Obesity; Physical activity; Shorts-chain fatty acids.

Grants and funding

Financial Support The study was supported by the Spanish Ministry of Economy and Competitiveness via Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI13/01393) and PTA 12264-I, Retos de la Sociedad (DEP2016-79512-R), and European Regional Development Funds (ERDF), by the Spanish Ministr y of Education (FPU16/05159 and FPU17/01523), the Fundación Iberoamericana de Nutrición (FINUT), the Redes Temáticas De Investigación Cooperativa RETIC (Red SAMID RD16/0022), InFLAMES Flagship Programme of the Academy of Finland (decision number: 337530), Fundación Alfonso Martin Escudero and Ramon y Cajal Fellowship (RYC2022-036473-I), AstraZeneca HealthCare Foundation, the University of Granada Plan Propio de Investigación 2016-Excellence actions: Unit of Excellence on Exercise and Health (UCEES), and by the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades (ERDF, SOMM17/6107/UGR). AL and RVV are supported by the funds of European Commission through the “European funds for regional development” (EFRE) as well as by the regional Ministry of Economy, Science and Digitalization of Saxony-Anhalt as part of the “Autonomy in old Age” (AiA) research group for “LiLife” Project (Project ID: ZS/2018/11/95324). We would like to thank the team of Data Integration Center of University Medicine Magdeburg for local data-analysis solutions; they are supported by MIRACUM and funded by the German Federal Ministry of Education and Research (BMBF) within the “Medical Informatics Funding Scheme” (FKZ 01ZZ1801H).