Soybean (Glycine max [L.] Merr.) production is susceptible to biotic and abiotic stresses, exacerbated by extreme weather events. Water limiting stress, that is, drought, emerges as a significant risk for soybean production, underscoring the need for advancements in stress monitoring for crop breeding and production. This project combined multi-modal information to identify the most effective and efficient automated methods to study drought response. We investigated a set of diverse soybean accessions using multiple sensors in a time series high-throughput phenotyping manner to: (1) develop a pipeline for rapid classification of soybean drought stress symptoms, and (2) investigate methods for early detection of drought stress. We utilized high-throughput time-series phenotyping using unmanned aerial vehicles and sensors in conjunction with machine learning analytics, which offered a swift and efficient means of phenotyping. The visible bands were most effective in classifying the severity of canopy wilting stress after symptom emergence. Non-visual bands in the near-infrared region and short-wave infrared region contribute to the differentiation of susceptible and tolerant soybean accessions prior to visual symptom development. We report pre-visual detection of soybean wilting using a combination of different vegetation indices and spectral bands, especially in the red-edge. These results can contribute to early stress detection methodologies and rapid classification of drought responses for breeding and production applications.
© 2024 The Author(s). The Plant Phenome Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy and Crop Science Society of America.