A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom Phaeodactylum tricornutum: ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO3 - transporter (PtSCL4-2). Here, we individually overexpressed these genes in P. tricornutum to investigate their respective roles in resisting acidic stress (pH 5.0). The genetic modifications enabled positive growths of transgenic strains under acidic stress that completely inhibited the growth of the wild-type strain. Physiological studies indicated improved photosynthesis and reduced oxidative stress in the transgenic strains. Transcriptomes of the PtCPA- and PtSCL4-2-overexpressing transgenics showed widespread upregulation of various transmembrane transporters, which could help counteract excessive external protons. This work highlights ion/electron carrier genes' role in enhancing diatom resistance to acidic stress, providing insights into phytoplankton adaptation to ocean acidification and a strategy for biological carbon capture and industrial flue gas CO2 utilization.
Keywords: Biotechnology; Genetic engineering; Genetics.
© 2024 The Author(s).