Unravelling the genetic architecture of soybean tofu quality traits

Mol Breed. 2025 Jan 3;45(1):8. doi: 10.1007/s11032-024-01529-x. eCollection 2025 Jan.

Abstract

Tofu is a popular soybean (Glycine max (L.) Merr.) food with a long tradition in Asia and rising popularity worldwide, including Central Europe. Due to the labour-intensive phenotyping procedures, breeding for improved tofu quality is challenging. Therefore, our objective was to unravel the genetic architecture of traits relevant for tofu production in order to assess the potential of marker-assisted selection and genomic selection in breeding for these traits. To this end, we performed QTL mapping with 188 genotypes from a biparental mapping population. The population was evaluated in a two-location field trial, and tofu was produced in the laboratory to evaluate tofu quality. We identified QTL for all investigated agronomic and quality traits, each explaining between 6.40% and 27.55% of the genotypic variation, including the most important tofu quality traits, tofu yield and tofu hardness. Both traits showed a strong negative correlation (r = -0.65), and consequently a pleiotropic QTL on chromosome 10 was found with opposite effects on tofu hardness and tofu weight, highlighting the need to balance selection for both traits. Four QTL identified for tofu hardness jointly explained 68.7% of the genotypic variation and are possible targets for QTL stacking by marker-assisted selection. To exploit also small-effect QTL, genomic selection revealed moderate to high mean prediction accuracies for all traits, ranging from 0.47 to 0.78. In conclusion, inheritance of tofu quality traits is highly quantitative, and both marker-assisted selection and genomic selection present valuable tools to advance tofu quality by soybean breeding.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01529-x.

Keywords: Genomic selection; Plant breeding; QTL mapping; Soybean; Tofu traits.