Background: Atherosclerotic cardiovascular disease (ASCVD) is a major threat to human life and health, and dyslipidemia with elevated low-density lipoprotein cholesterol (LDL-C) is an important risk factor, and in the optimal LDL-C scenario, apolipoprotein B (ApoB) has a more predictive value of ASCVD risk.
Methods: The study is a genome-wide association study (GWAS) based on a European population. A large GWAS dataset for atherosclerotic cardiovascular diseases was targeted, including coronary heart disease (CHD), ischemic stroke (IS), large-artery atherosclerotic stroke (ISL), small-vessel stroke (ISS), and myocardial infarction (MI). Univariate two-sample mendelian randomization (MR) analyses of ApoB and the above cardiovascular diseases were performed separately, and the association was assessed mainly using the inverse variance weighted (IVW) method, with confidence intervals for the superiority ratios set at 95%. In addition, the experiment was supplemented using MR-Egger, weighted model and weighted median (WM).
Results: Based on the results of univariate two-sample mendelian randomisation analysis, it was shown that there was a causal relationship between ApoB and CHD (OR = 1.710, 95% CI 1.529-1.912, P = 0.010), ISL (OR = 1.430, 95% CI 1.231-1.661, P = 2.714E-06), ISS (OR = 1.221, 95% CI 1.062-1.405, P = 0.005) were causally related to each other and the disease prevalence ratio was positively correlated with ApoB concentration.
Conclusion: This MR analysis demonstrated a causal relationship between ApoB and CHD, ISL, ISS, but not with the risk of developing IS and MI, which further validated the relationship between ApoB and the risk of ASCVD, and contributed to a better understanding of the genetic impact of ApoB on ASCVD, and to a certain extent, could improve the management of ApoB and reduce the prevalence of ASCVD.
Keywords: Apolipoprotein B; Atherosclerotic cardiovascular disease; Mendelian randomization; Risk factors.
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.