Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO x /β-Ni(OH)2 composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized via a unique hydrothermal approach under the co-participation of glycerol and acetic acid. The employed characterizations unveil a close CeO x /β-Ni(OH)2 interfacial contact and numerous surface defects (e.g., oxygen vacancies). Such features significantly result in a significant enhancement in the electrocatalytic glucose oxidation reaction. Indeed, the obtained Ce@NF-GA catalyst demands a low potential of 1.31 V to reach a current density of 10 mA cm-2. Additionally, Ce@NF-GA exhibited a high charge transportation capability and stability for 3 consecutive working cycles, corresponding to an outstanding Faradaic efficiency of ∼100% toward hydrogen production. The exploration of such novel material discloses a potential pathway for the utilization of Ce-based electrocatalysts for the energy-saving hydrogen production-coupled glucose oxidation reaction.
This journal is © The Royal Society of Chemistry.