This study highlights the importance of developing sensitive and selective sensors for use in pharmaceutical applications for the first time. A novel iron(III)-complex, constructed from unsymmetrical tetradentate NNN'O type Schiff base ligand (E)-3-((6-aminopyridin-2-yl)imino)-1-phenyl butane-1-one (LH) and its structure of it characterized by using various spectroscopic techniques such as FT-IR, UV-Vis, elemental analysis, conductivity, magnetic susceptibility measurements and the TGA method. The correlation of all results revealed that the coordination of the (LH) with the metal ion in a molar ratio of 1:1 leads to the formation of an octahedral geometry around the metal ions. Conductivity data showed the electrolytic nature of the complex. Its fluorescence properties were thoroughly investigated by introducing aluminium ions in deionized water, which increased fluorescence intensity at 460 nm. The detection limit for Al3+ was optimized and found to be 1.5 µM. Notably, the fluorescent sensor successfully monitored Al³⁺ in pharmaceutical formulations. This fluorescence-based analytical method is an alternative to other methods due to its high selectivity, sensitivity, and speed. These results suggest the high potential of this system for pharmaceutical monitoring applications.
Keywords: Al (III) Sensing; CHEF effect; Iron (III)-complex; Schiff base.
© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.